Clarkson-McCarthy inequalities in Schatten ideals

Edward Kissin, London Metropolitan University, Great Britain

For Schatten ideals C_p of compact operators on a Hilbert space H, denote by $C_p(n)$ the spaces of all columns $\overline{A} = (A_i), 1 \leq i \leq n < \infty$, with $A_i \in C_p$. Let H^n be the sum of n copies of H. Each $R \in B(H^n)$ can be represented as an $n \times n$ block-matrix operator (R_{jk}) with $R_{jk} \in B(H)$, so it acts on $C_p(n)$. We prove several inequalities which link the $\|\cdot\|_p$ -norms of operators from $R\overline{A}$ and from \overline{A} . For operators $R = (r_{jk}\mathbf{1})$, where r_{jk} are some nth roots of unity and $\mathbf{1}$ is the identity operator on H, some of these inequalities were previously established by Bhatia and Kittaneh. For n = 2, Bhatia and Kittaneh's inequalities are, in turn, generalizations of the Clarkson-McCarthy and Hirzallah-Kittaneh inequalities for sums of operators.

Additionally, let $\{P_j\}_{j=1}^n$ be a set of mutually orthogonal projections in B(H) with $\sum_{j=1}^n P_j = \mathbf{1}$, and let $\{Q_k\}_{k=1}^m$ be another such set. We then obtain some inequalities which link the norm $||A||_p$, for $A \in C_p$, and the norms $||P_jAQ_k||_p$. This extends the norm inequalities for partitioned operators hitherto proven by Bhatia and Kittaneh.