Distance preserving maps on matrices

Chi-Kwong Li, College of William and Mary, USA

Let \mathcal{M} be a linear space of matrices equipped with a multiplication A * B. Suppose $\|\cdot\|$ is a norm on \mathcal{M} satisfying certain invariant property such as unitarily invariant, unitary similarity invariant, or unitary congruence invariant. We discuss results and open problems concerning mappings $T : \mathcal{M} \to \mathcal{M}$ which satisfy one of the following conditions.

- 1. T is linear and ||T(A)|| = ||A|| for all $A \in \mathcal{M}$.
- 2. ||T(A) T(B)|| = ||A B|| for all $A, B \in \mathcal{M}$.
- 3. T(A * B) = T(A) * T(B) for all $A, B \in \mathcal{M}$, and ||T(A)|| = ||A|| for all $A \in \mathcal{M}$.
- 4. ||T(A) * T(B)|| = ||A * B|| for all $A, B \in \mathcal{M}$.

Furthermore, we consider similar problems for mappings between different matrix spaces \mathcal{M}_1 and \mathcal{M}_2 that are equipped with different norms.