The exponent of a K-primitive matrix

Raphael Loewy, Technion - Israel Institute of Technology, Israel

Let K be a proper, convex cone in \mathbb{R}^{n}. Let $\pi(K)$ denote the set of all K nonnegative matrices, that is, all $A \in \mathbb{R}^{n \times n}$ which map K into K. We say that $A \in \pi(K)$ is K-positive provided that $A x \in \operatorname{int} K$ for every $0 \neq x \in K$, and it is K-primitive provided that there exists a positive integer ℓ such that A^{ℓ} is K-positive. The exponent of a K-primitive matrix is the smallest positive integer ℓ such that A^{ℓ} is K-positive.

When $K=\mathbb{R}_{+}^{n}$, the nonnegative orthant, the notions of a K-nonnegative, K-positive and K-primitive matrix reduce to the well known notions of a nonnegative (elementwise), positive and primitive matrix.

It is our purpose to discuss K-primitive matrices, and in particular their exponents. An important tool in the discussion is a directed graph that can be associated with each $A \in \pi(K)$, and whose vertices are the extreme rays of K. When K is polyhedral and A is K-primitive, an upper bound for the exponent of A is obtained. This bound generalizes the well known result, due to Wielandt, which asserts that the exponent of an $n \times n$ primitive matrix is at most $n^{2}-2 n+2$.

